

Interactions Humain/Textile/Environnement à l'Ere Digitale

By Xianyi Zeng
ENSAIT Textile Institute, Roubaix, France

Outline of the presentation

- Basic information and main research activities
- Smart materials
- Textile sensors and actuators
- Intelligent clothing: electronic and textile integration process
- E-garments and human big data
- Two applications of intelligent wearable systems:
- Fetal movement and pregnant woman's well-being detection
- Human/robot interaction for risk management (firemen's clothing)

ENSAIT: the unique French textile engineer school

Location: Roubaix city - Lille Urban Community

GEMTEX Research Laboratory

A multidisciplinary laboratory: chemistry, mechanics and IT two intergroup themes: smart textiles and sustainable textiles

HCD Research Team

Research staff in 2017/2018

Permanent researchers/teachers:

- 10 teachers from ENSAIT (PhD holders in IT)

Non-permanent researchers:

- 23 PhD students in progress
- 6 PhD students defended their thesis
- 2 Post-Doc researchers

Research results in HCD (2017/2018)

- Journal papers with IF: 30
- Chapters in scientific books: 6
- Patents: 3
- Industrial contracts (>10): France Télécom, Orange, CHRU, Unilever, Decathlon, Damart, Adidas, Chanel, ...
- European and national projects:

SMDTex (EU Erasmus Mundus), ETEXWELD (EU H2020) FBD_BModel (EU H2020), HOMO Tetilus (FR ANR), IOTFetMov (FR ANR), Camille 3D Sensoriel (FR FUI), DIGITEX2 (FR FUI), SUCRÉ (RE ARCIR) ...

Fashion/Textile Industry 4.0

History of the textile industrial revolutions:

End of the 19th century: first **chemical** fiber

Today: big data driven, smart factory, tracking, deep learning

1784: first mechanical loom

Steam-powered mechanical manufacturing

End of the 19th century: first textile production

Electricity-powered mass production

1970s: first programmable textile

Automation of manufacturing by **computers**

Cyber-physical systems Combination of ICT and materials

End of 18th -19th century

Beginning of 20th century

1970s

Today

Artificial intelligence – create decision on the base of external stimuli Intelligent structures – reaction to external stimuli

- "Intelligent" body adaptive response apparel textiles having improved comfort controlled by the state of microclimate and wearers needs.
- "Intelligent"-knowledge based technical textiles with specified properties (e.g. locally compressive behaviour) and complex actions (comfort type mattresses for disabled persons, intelligent car seats etc.)
- Hybrid multifunctional textiles for protective clothing combining improved protection (a barrier against the selected types of radiation and particles) with improved comfort.

Stimulus (change) S => sensors

Electromagnetic energy (UV, visible, IR radiation)

Chemical energy (moisture, presence of ions, etc.)

Mechanical energy (pressure, break, twist, atd.)

Response (change..) R => actuators

Shape (swelling, shrinking)

Colour (shade, intensity)

Electrical conductivity

State of matter (phase change, crystallinity etc.)

Smart structures

- Synthesize new materials and structures at the atomic or molecular level with smart functionality
 - New discoveries are required
 - · Technologies are immature
- Synthesize new materials and structures by compositing known constituents
 - Active elements attached to the structure (parasitic)
 - Active elements embedded in the structure

ensait

Active and passive smart textiles: reversible

- Sensitive to external fields (ph, radiation, electric, magnetic, mechanical fields). PASSIVE
- Changing properties(usually form) asresponse to external field changes

Active smart textiles

- Shape memory
 (reversible form changes due to heating and cooling)
- Heat storing and evolving materials
- Variable porosity and water vapor permeability

Thermal insulation

Material	Thermal
	Resistance (Km²/w)/mm
Polyester (hollofill)	0.0151
Polyester (microfibres)	0.0320
Polyester (split-fibres)	0.0473

Air gap increased by change in shape of laminated film

Categories of sensors and actuators:

- Optical (Sensor and actuator)
- Electrodes biopotential (sensor and actuator)
- Force/pressure/stretch (sensor and actuator)
- Temperature (sensor)
- GPS (sensor)
- Chemical and gas (sensor)
- Microphones (actuator)

Textile materials for sensing and actuation:

- Fiber functionalization
- Fabric surface functionalization
- Fabric structure change

Fiber functionalization with nanotechnology:

incorporation of nanofillers for functional properties =>
thermal sensor

- Dispersion of nanofillers
- Characterization of physicochemical properties of polymers
- Thermal and rheological behavior

Functional fibers

Thermal sensors

Textile Sensors and actuators

Functionalization of textile surface

Instrumentation of parachute to monitor inflation → elongation piezoresistive sensor (change of electrical conductivity)

Elaboration by **solvent deposition** of conductive track whose electrical conductivity varies with external stress.

Textile Sensors and actuators

ensait

graphene film

Wearable graphene film strain sensors encapsulated with nylon fabric => mechanical strain sensor

Graphene: crystalized bi-dimensional material

A flexible and high conductivity graphene film is fabricated by thermal expansion-pressing forming process

hydraulic press

0.2

Time(s)

Human motion monitoring

Smart Materials: Textile Sensors and actuators

ensait

Formulation of mixed immiscible polymers for defined morphologies

Tricomponent Melt

Development of tricomponent piezoelectric polymer fibers for energy harvesting textiles

Nanofibres

Ultra fine fibre for air filtration

Smart Materials: Textile Sensors and actuators

Fabric thermal actuation: transcutaneous electrical nerve stimulation => knitwear design

(1)

(2)

(3)

(4)

Conductive and absorbent fabrics for textile electrodes

Wearable electronics

GAIT ANALYSIS PROTOTYPE

E-TAG AND SWEATER SNAP CONNECTIONS

Music jacket

Inteligent shirt

- Electronic devices
- Heart rate
- Breathing
- Body temperature
- Electrocardiogram
- Voice

Weave with optical fibers net

Applications: permanent human data monitoring,

collection and learning

- Fashion design
- Medical diagnosis
- Security, protection and risk management
- Sport
- Human cooperation

2007 - One hundred eleven

Wearable system: basic components – micro controller

LilyPad Arduino

- A microcontroller board for etextiles, sewed to fabrics and mounted power suppliers, sensors and actuators
- Programming with the Arduino software
- Small size: a circle of 50mm in diameter
- Washable

Wearable system: basic components – sensors

Module (in g) accelerometer at rest

ensait

Intelligent clothing: electronic and textile integration process

Intelligent garment for monitoring health state

ensait

Intelligent garment for remote diagnosis

Components:

- Physiological sensors
- Connected garment
- Local diagnosis
- Cloud computing platform
- User interaction
- Global diagnosis
- Big data collection
- Self-learning

Application 1: ANR – IOTFetMov Intelligent garment for remote diagnosis of pregnant women

ensait

Application 2: ARCIR - SUCRé Risk management by human-robot interaction

Proposed design process:

Creating a new design process adapted to wearer's body shape and comfort and enhancing the signal quality

From human body data to garment pattern design

Sensor integration by considering measure quality

Point of Maximum Impulse (PMI)

The measuring system:

The parameters of the new sensor: 3rd version:

- ✓ A 8 bit microcontroller for communication with outside (Bluetooth, ZigBee)
- ✓ A 32 bit microcontroller for local decision support system and data processing
- ✓ A flash memory (256Mbits)
- ✓ The sensor: three axes for 14 bits at the frequency of 200 Hz
- ✓ Data transmission: 40Kbits/s

Application 1:

Intelligent garment for remote diagnosis of pregnant women

Textile and garment design:

- ✓ Principle: reliable data acquisition, comfort and washing stability
- ✓ Prototype : belt type
- ✓ Material: a mixture of polyamide (90%) and elasthan (10%).
- ✓ Conduction thread: datastretch Process: knitting
- ✓ Style : body scanner 3D => body shape evolution => adaptable belt

One sample with conduction thread

Data communication

Choix de protocoles / choix de porteurs de courants faibles (énergie - signaux A/N)

ZigBee, Bluetooth, Wifi,...

☑ ZigBee protocol: an IEEE 802.15.4 standard

Modern network protocol employ a concept of layers to separate different components and functions into independant modules

> Message Routing to final destination Ad hoc network creation on the fly Self-healing mesh Minimum bytes to embedd payload

₩ BI F

Bluetooth Modern network protocol Mobile operating system compliance Low power energy

ensait

Intelligent wearable system: applications

Application 1: identification of fetal movements

Original signal and signal filtered by wavelet analysis

Application 1: identification of fetal movements

ensait

Intelligent wearable system: applications

Application 1: identification of fetal movements

-Fourier

Application 2: identification of wearer's physiological signals

Application 2: identification of wearer's physiological signals

SDNN (estimate of overall HRV): reflecting all the cyclic components responsible for variability during the recording

SDANN (estimate of short-term components of HRV): the changes in heart rate due to cycles longer than 5 minutes

HRV triangular index (estimate of overall HRV): the integral of the density distribution divided by the maximum of the density distribution

Communications:

- BLE(Bluetooth Low Energy) Protocol Stack 4.0
 - Aimed at novel healthcare, fitness, security and home entertainment industries
 - Provides reliable connections and reduce power consumption and cost while maintaining a similar communication range
 - Communication
 - Model

Communications:

Perspectives

- Integrating multiple (electronic and textile) sensors and multiple flexible and rigid materials (textile, 3D printing and others) to form an complete wearable system
- Enhancing the autonomy and intelligence level of the microcontroller/embedded system
- Developing a systematic design approach by combining signal quality, comfort and aesthetic level
- Integrating more complex scenarios on emotional and physiological analysis
- Developing interactions between the garment, android devices and cloud computing platform
- Wearable system: ICPS (Industrial Cyber-Physical System) requiring multidisciplinary efforts (sensor, actuator, design, material, signal processing, decision support, physiology, psychology)